Computer Science 62

Lab 3

Wednesday, February 12, 2014

In this lab, we’ll be playing with some of the sorting algorithms we’ve discusses in class. In addition,
you’ll get some familiarity with the merge method of MergeSort, which you’ll be implementing an
on-disk version of for the next assignment.

Note: this lab assumes you've kept up with the reading for the class! In particular, we’ll be looking
at Bubble sort, Insertion sort, Selection sort, Quicksort and Mergesort which are all described in
Chapter 6 of the Java Structures textbook.

1 Getting started

Create a new project in Eclipse called Lab03. Then open up Terminal and copy the starter files
from:

/common/cs/cs062/1labs/1ab03

Note that there are two directories inside of 1ab03 that you need to copy to your workspace. Be
sure to copy both directories (and not just the files in the directories)! To do this type:

cp -r /common/cs/cs062/1labs/1ab03/* /Documents/cs062/workspace/Lab03

The flag “1” tells the copy command to recursively copy all files and directories. The star * is a

wildcard symbol that matches “everything”. So this command recursively copies everything from
the lab03 directory to your Eclipse directory.

After you’'ve copied the code, spend 5 minutes looking at the different classes. In particular,

e Look at the interface
e Look at how the Quicksort and MergeSort classes implement the interface

e Look at how the SortTimer class is able to print out data for an arbitrary number of Sorter
classes (this is the benefit of using an interface!)

e Notice that the SortTimer class does a check for correctness after sorting. If you make a
mistake in implementing your merge method, you’ll get an error here.

2 Finish MergeSort

You've been given all of the code for this lab except the merge method, which you should now
implement. Give it a good effort, but if you get stuck, I've provided a solution below. However, it
will benefit you to figure it out during lab (without looking at the solution) while you have help
since you will be implementing something similar for yotur assignment.

Once this is done, you should be able to run the SortTimer class.

3 Play with the timing

Run the SortTimer class. Do the times look like you’d expect? Which one is faster?

This should give you some confidence that Quicksort average case works as we expect. As an
additional test, change the printTimes method to generate sorted data instead of random data.
How does this change your timing data? Is this what you expected?

4 Playing with the sorting algorithms

In Eclipse, navigate to the coinSort package and click on the file CoinSort. java. Now click on
the run symbol (the green circle with the white triangle) in the top toolbar.

You will see a window similar to the one for the Silver Dollar Game, except that all the squares
are filled, and the coins have different sizes. Use the keystrokes below to shuffle and sort the coins.
Experiment with several of the sorting algorithms.

b: sort the coins using bubble sort

c: sort the coins using a randomly-selected algorithm
i: sort the coins using insertion sort

q: sort the coins using quicksort

r: rearrange the coins into a random order

s: sort the coins using selection sort

el

: exit the program

The program you are using has a few additional features. Typing f (for “freeze”) stops the sorting;
typing t (for “thaw”) resumes the sorting. Typing f when the sorting is frozen advances the
algorithm by one step. You can continue to type £ to proceed step-by-step, or t to resume normal
execution.

Typing c selects one of the sorting algorithms at random and executes it. Practice with the ¢
command to develop your skill in identifying the algorithm from the pattern of comparisons and
swaps.

5 If you still have time...

Implement a new class for one of the O(n?) running time sorting methods that implements our
Sorter interface. Add this new class into the SortTimer class and compare its runtime to the
other sorting methods.

An implementation of merge. Here is one implementation of the merge algorithm. It uses an
extra ArrayList, and so mergesort does not sort “in place” as our other algorithms do.

public void merge(ArrayList<E> list, int low, int mid, int high){
Object[] temp = new Object[high-low];

int tempIndex = 0;
int lowIndex = low;
int midIndex = mid;

while(lowIndex < mid &&
midIndex < high){

if(list.get(lowIndex) .compareTo(list.get(midIndex)) < 1){
temp [tempIndex] = list.get(lowIndex);
lowIndex++;
Yelseq{
temp [tempIndex] = list.get(midIndex);
midIndex++;

tempIndex++;

// copy over the remaining data on the low to mid side if there
// is some remaining.
while(lowIndex < mid){

temp [tempIndex] = list.get(lowIndex);

tempIndex++;

lowIndex++;

// copy over the remaining data on the mid to high side if there
// is some remaining. Only one of these two while loops should
// actually execute
while(midIndex < high){

temp [tempIndex] = list.get(midIndex);

tempIndex++;

midIndex++;

// copy the data back from temp to list
for(int i = 0; i < temp.length; i++){
list.set(i+low, (E)templ[il);

