
Binary Trees
Due Sunday March 16, 2014

Problem Description

Recall that a binary tree is complete if all levels in the tree are full1 except possibly the last level which is
filled in from left to right. In this assignment, you will create a CompleteBinaryTree data structure that
stores data in a complete binary tree. Nodes are added and removed from the binary tree in such a way that
the completeness of the tree is always preserved.

In class, we discussed three ways to traverse a binary tree: pre-order, in-order, and post-order. A level-order
traversal is a fourth way of traversing a binary tree that visits all of the nodes at a depth of i before visiting
the nodes at a depth of i + 1. The notion of a level-order traversal will be extremely helpful to you as
you think about how to add and remove nodes from the binary tree in such a way that the tree is always
complete. For example, assume that the binary tree looks like:

+!
Tree Terminology 

!  edge – connects a node to its subtree 

!  parent/child – a parent node is directly 
above a child node 

!  siblings – nodes that have the same 
parent 

!  ancestors/predecessors – the 
ancestors of n are n, n’s parents, n’s 
parent’s parent, etc. 

b!

a!

e! f!

i!

c!

d! g!

Figure 1: A complete binary tree

The nodes in this tree were added in the order: a, b, c, d, e, f, g, i. If we wanted to add another node (j) to
the tree, this new node would be added as the right child of node d. In other words, we are adding nodes
to the tree in a level-order manner: we finish adding nodes to depth i before we add nodes to depth i + 1.
Similarly, if we wanted to remove a node from this tree, we would remove the node i.

It is recommended that you skim section 12.6.4 entitled Level-order Traversal in the Java Structures textbook
before starting this assignment. Note that this section discusses how to make an Iterator for a binary tree
that returns nodes according to a level-order traversal. You are not being asked to create an Iterator.
Instead, you should take note of how a level-order traversal is performed. In particular, you should take note
of what additional data structures are needed to perform a level-order traversal!

Unlike the other traversals we looked at in class, a level-order traversal can be performed without using
recursion. Instead, an auxiliary data structure is used to keep track of what nodes should be visited next.
In a similar manner, you will use an auxiliary data structure to keep track of where to add (and remove)
nodes next.

1A binary tree is full if every node is either a leaf node or has two children

1



Class structure

There is only one class for this assignment: CompleteBinaryTree. You will see in the starter code that this
class already contains two instance variables:

protected BinaryTree<E> root;

protected Queue<E> queue;

As you implement the CompleteBinaryTree class, you should add additional instance variables that are
helpful.

You are responsible for implementing three methods: add(E value), E remove(), and printTree(). In
addition, you must add a main method where you illustrate the functionality of your code.

adding a node

The add method adds a node to the binary tree in such a way that the completeness property of the tree is
always ensured: from left to right and from top to bottom. In order to do this, you should use a Queue to
store the nodes in the tree. When add is called,

• The new node is created.

• If the tree is empty, the new node becomes the root

• Otherwise, we need to determine which node should be the parent of this new node. To do this, the
front of the Queue is examined. If the node at the front of the Queue does not have two children, the
new node is added as a child. If the node at the front of the Queue already has two children, it is
dequeued. What should happen to the new node at this point?

Please work through a few examples of adding nodes to the CompleteBinaryTree class so that you understand
the purpose of the Queue. When are nodes added to the queue? When are nodes removed from the queue?
The order of the nodes in the queue should be the order in which the nodes would be visited in a level-order
traversal.

As a final note, you may be tempted to perform a level-order traversal of your binary tree every time add

is called. In other words, to figure out where to add a new node you might be tempted to start a brand
new level-order traversal of the tree starting from the root. This is not a good idea! This would mean that
adding a new node is O(N) where N is the number of nodes in the tree!

Instead, the root node should only be put on the Queue one time (when it is first created) and from that
point on the Queue should keep track of the nodes in the tree. That is why the Queue is an instance variable
instead of a local variable inside of add. In this way, adding a new node is O(1)!

removing a node

The remove method removes a node from the binary tree in such a way that the completeness property of
the tree is always ensured: from right to left and from bottom to top. The simplest way to do this is to
model the remove method after the add method. In particular, you can use another data structure (just like
we used a Queue for the add method) to keep track of the order in which nodes should be removed.

Once you have a pointer to the node that should be removed, you should:

• Get the parent of this node

2



• Update the parent node so that it no longer points to this child node2

• Return the value of the removed node

You can look at the source code of Bailey’s BinaryTree<E> class to see what methods you can call on a
BinaryTree<E> node (left, right, parent, setLeft, etc). This might give you some ideas on how to
correctly remove a node from a binary tree.

You can, in fact, use the same data structure for both the add and remove methods! There are data structures
(ones that we discussed in class and ones that we did not discuss in class) that are similar to a Queue and
a Stack but allow the user to modify (i.e. add and remove) from both ends of the data structure. You will
receive extra credit if you implement the add and remove methods so that they use only one data structure
together!

printTree

The printTree method prints a textual representation of the binary tree using System.out.println and
related methods (e.g. System.out.format). The minimum requirements of the printTree method are as
follows:

• Each level (depth) of the tree should be printed on a separate line

• Each parent node should be centered above its two children

Note that printing the tree will (again) require a level-order traversal of the tree! You can create a local
variable Queue to perform the level-order traversal and help you print the tree3. The following is one possible
output of calling printTree on a CompleteBinaryTree of Integers:

Figure 2: Textual print out of a CompleteBinaryTree of Integers

Note that each level of the tree is on a separate line and that the parent nodes are centered above the
children. The root node contains the value 5. Its left and right child contain the values 2 and 3 respectively.
The last level contains the leaf nodes: 7, 8, 9, and 5.

For extra credit, you can make a fancier printTree method. See Figure 2 for an example of a slightly better
print out of the binary tree that shows the edges as well. Feel free to explore other styles and to make your
printTree method as sophisticated and informative as you’d like!

2This step, if not done correctly, can introduce the dreaded NullPointerException. Why? How do we indicate that a node
does not have a left or right child?

3What is the Big-O complexity of printTree?

3



Figure 3: A slightly fancier print out of the CompleteBinaryTree

The main method

Please provide a main method in your CompleteBinaryTree class that:

• Creates a CompleteBinaryTree of Integers

• Adds at least 7 integers to the binary tree and prints out the binary tree in between each call to add

• Removes integers from the binary tree and prints out the binary tree in between each call to remove

The main method is a great place to test the correctness of your code! You are being asked to provide a
main method (1) to encourage the habit of using the main method as a place to unit test your code and (2)
as a way of grading your assignment. Your CompleteBinaryTree class will be run and part of your grade
will be based on what your main method prints out! So don’t forget to include the main method!

Getting Started

All startup code is available in /common/cs/cs062/assignments/assignment06. A great way to get started
on this assignment is to first read about level-order traversals, and then draw examples of adding nodes
to the binary tree (using a Queue) until you are comfortable with how the Queue can be used. Once you
understand how to add nodes, it will be easier to understand how to remove nodes.

Extra Credit

There are two extra credit opportunities for this assignment: (1) using only one data structure to help add
and remove nodes and (2) a fancier, more sophisticated printTree method.

Grading

You will be graded based on the following criteria:

4



criterion points
main method prints integer example 5
add correctly implemented O(1) 5
remove correctly implemented O(1) 5
General correctness 3
Appropriate comments (including JavaDoc) 2
Style and formatting 2

What to hand in

As usual, export your entire folder from Eclipse to your desktop. Make sure the exported folder on your
desktop contains both a bin folder with your .class files and a src folder with your .java files.

Please remember to rename your folder to “Assignment7 LastNameFirstName”! Then drag
your renamed folder into the dropbox. Be sure that your code is clear, formatted properly, and commented
appropriately using Javadoc. See the “Style Guide” on the handouts webpage for what is expected of you.

5


