
HW 6: The Banker’s Algorithm

Your job is to implement the banker’s algorithm, to keep deadlock from occuring. Your source
code should be called banker.c. The program will take a single command-line argument:
the name of a scenario file to read. Here is a sample scenario file:

2 1 1

2 1 0

1 1 1

+0A

+0A

+1B

+0B

+1A

-1A

!1

+0C

The first part of the file is the setup. It contains (p + 1) lines, where p is the number
of processes. These lines are tab-separated, and the number of columns is the number
of resources. Processes are numbered consecutively starting at 0, and resources are lettered
consecutively starting at A. (There will only be 26 resources at most.) The first line indicates
the total number of resources there are of each type. In the example there are 2 of type A,
and one each of types B and C. The remaining lines are the declarations each process has
made, as to the maximum number of each resource it will require. So process 0 has declared
that it will only ever need 2 of resource A, 1 of B, and 0 of C.

The second part begins after the skipped line. It is the precise sequence of events that occurs.
There are 3 kinds of events:

� Request: These lines begin with a +, followed by a number and a letter with no spaces.
Note that the number might be multiple characters. The number indicates the process
making the request, and the character is the resource requested. The first event line
in the example indicates that process 0 has requested a resource A.

� Relinquish: These begin with a -, but otherwise look like requests. In this event, a
process is giving a resource back. It will always succeed (unless the process has already
terminated). In the 6th event above, process 1 is relinquishing a resource A.

� Termination: These begin with a !, and they indicate that the given process has
finished. All remaining resources that it held are relinquished. Any further requests
from it should be ignored.

Every event that is not ignored will result in at least one line being printed to the screen.
Upon receiving a request, your banker will print out the request and how it was handled, all
in one line. The response will be in parentheses, as follows:



� If the request is valid and there are enough resources to grant it according to the
banker’s algorithm, do so. Finish the output line by printing (GRANTED) at the end of
the line.

� If the request is valid but there aren’t enough resources to grant it, the process will be
frozen. Finish the output line with (FROZEN), and place the event on a queue. Further
events involving that process will also be placed on the queue until it is unfrozen.

� If the request is invalid, because it has exceeded its declared needs, terminate the
process immediately (reclaiming all its resources and ignoring it from now on). Finish
the output line with (INVALID: PROCESS TERMINATED).

When a resource is relinquished or several are relinquished (possibly due to termination),
the event is printed as shown in the example. Then, the queue of frozen processes will be
checked to see if one or more processes can be unfrozen and their requests can accomodated.
Each event should be checked in strict first-come-first-served order. If a change occurs in any
of the frozen processes, start searching the queue again for another satisfiable event. Only
stop when you have gotten through the queue with no changes. Note that each process must
have its events run in strict order, so if a frozen process’s prior event cannot occur, nor can
any further ones. If a request is granted, print out that the process was UNFROZEN, followed
by the granted request as normal.

Here is the expected output from the above sample file:

Process 0 requested a Resource A. (GRANTED)

Process 0 requested a Resource A. (GRANTED)

Process 1 requested a Resource B. (FROZEN)

Process 0 requested a Resource B. (GRANTED)

Process 0 requested a Resource C. (INVALID: PROCESS TERMINATED)

Process 1 was UNFROZEN: Process 1 requested a Resource B. (GRANTED)

Process 1 requested a Resource A (GRANTED).

Process 1 relinquished a Resource A.

Process 1 terminated.

$


