
Homework 2: Connect Four Bot

Create an AI to play “Connect Four”, using the minimax algorithm.

Download the files connect4.py and connect4player.py. connect4.py contains the Con-
nect Four game, which you will not modify at all. Your job is to modify the ComputerPlayer
class in connect4player.py. It has two public methods:

� init (self, id, difficulty level): the constructor. id will hold either 1 or 2,
depending on whether this player is to be Player 1 or Player 2. difficulty level is
a positive integer, that represents the number of plies to look ahead.

� pick move(self, rack), which determines the move to make. rack holds a 2D tuple
indicating the current board state. It is column-major, with element [c,r] indicating
the position c from the left, r up from the bottom. A 0 indicates that no disc is there,
1 indicates that Player 1 has a disc there, and a 2 indicates that Player 2 does. It must
return an 0-indexed integer, indicating the column in which to play.

At present, ComputerPlayer just plays in a random location (after pausing dramatically).

The evaluation function you should use is as follows. You must inspect every “quartet”, in
which there are four spaces in a row in which a player could potentially win. A standard
rack contains 24 horizontal quartets, 21 vertical quartets, and 24 diagonal quartets (12 going
up-right and 12 going down-right). For each of these 69 quartets:

� Point value is positive if it favors the AI, and negative if it favors its opponent.

� If it contains at least one disc of each color, it cannot be used to win. It is worth 0.

� If it contains 4 discs of the same color, it is worth ±∞ (since one player has won).

� If it contains 3 discs of the same color (and 1 empty) it is worth ±100.

� If it contains 2 discs of the same color (and 2 empties) it is worth ±10.

� If it contains 1 disc (and 3 empties) it is worth ±1.

Some hints:

� If you need a refresher on how the game works, go to https://en.wikipedia.org/

wiki/Connect_Four.

� Do not assume that the board is a standard-sized one. It may have unusual dimensions.

� Be sure to bug test extensively, using different levels. This code can get twisted, fast.

� You may find it easier to implement negamax rather than classic minimax. (Mathe-
matically, the two algorithms are identical.)

� Run the program with the -h command-line option to learn some useful commands.

Extra credit: Implement alpha-beta pruning. If you choose to do this, make sure that
you can turn it on and off easily, so that you can check your results. Remember, proper
alpha-beta pruning will never change a move, but will calculate them more quickly.

https://en.wikipedia.org/wiki/Connect_Four
https://en.wikipedia.org/wiki/Connect_Four

