
Homework 1: Solving the Sliding Puzzle With A*

A 15-Puzzle. This sliding puz-
zle is solvable in 31 moves.

Your job is to create an AI to solve a “sliding puzzle” (like
the 15-puzzle or 9-puzzle) using the A* algorithm. Given
any puzzle, you must find the sequence of moves to put all
the numbers in order, with the gap in the lower-right square.

A program has been provided for you, which is called
slidingpuzzle.py. If the proper graphics libraries are on
your computer, it will display an animated puzzle that will
then be solved. The program takes two command-line argu-
ments:

� The name of a file containing an unsolved puzzle.

� Optionally, either -n or --nographics. If one of these
is present, it will turn off graphics and and display the
solution in the terminal.

The .puz files it accepts are text files of m × n puzzles, containing the proper numbers
separated by spaces. The gap in the puzzle is represented by the . character. For example,
the puzzle in the figure would be:

6 5 2 3

. 7 11 4

9 1 10 8

15 14 13 12

Your job is to create a Python file called solver.py. This file will have one public function,
called solve(). solve() will take one argument: a 2D row-major list containing a puzzle.
The gap will be represented by a 0. It will return one of two things:

� If the puzzle is not solvable, it will return None.

� If the puzzle is solvable, it will return a solution of minimum length. This will be a list
of strs, each of which is either 'U', 'D', 'L', or 'R', representing an “up”, “down”,
“left”, or “right” move. For the puzzle shown here, one possible solution is:
['U','U','L','L','D','D','R','U','R','U','L','D','R','D','D','L','U',

'R','D','L','L','L','U','U','R','U','R','D','L','L','U']

Since you are using A*, you will probably also want to create a State class, which designates
a state of the puzzle (that is, a current layout of all the tiles). Because you will be putting
this State inside of a closed list, it will need to be hashable for efficiency. This means that
you will need to make sure that your State object includes a “magic” hash () method.
The heapq module will also be useful, as it provides functions to alter a list as if it were a
priority queue.

A* requires an admissible heuristic, that estimates how close any given state is to the goal
state. An easy heuristic to use is to relax the problem so that tiles can move through each



other, and count the number of moves that would be necessary. For example, in the given
puzzle the 1 tile must move left once and up twice, for 3 moves. Adding this up for every
tile, we find that this heuristic estimates this state to be 19 moves away from the goal state.
(Although this heuristic works for small puzzles, it can be a problem for larger puzzles and
puzzles with longer solutions. See below.)

A sliding puzzle contains 2 orbits, each of which is a collection of states that are mutually
reachable from each other via any number of moves. Each is the same size. This means that
any random state is only 50% likely to be solvable. Here is an algorithm to determine if the
goal state is reachable from any arbitrary state.

1. Flatten the 2D list into a 1D list and remove the 0. So the given puzzle would become:
[6, 5, 2, 3, 7, 11, 4, 9, 1, 10, 8, 15, 14, 13, 12]

2. Count the number of inversions in this list. This is the number of elements after a
given element that are less than that element. So in this case, tile 6 has 5 values after
it, that are less than it. Tile 10 has only 1 such value. The total number of inversions
here is 28.

3. If the puzzle’s width is odd, the puzzle is solvable if and only if the total number of
inversions is even.

4. If the puzzle’s width is even, you must add the number of inversions to the number of
rows away from the bottom that the gap must move. (So if the gap is in the bottom
row, add 0. If the gap is in the penultimate row, add 1. And so on.) The puzzle
is solvable if and only if this sum is even. Thus, the given puzzle is solvable since
28 + 2 = 30.

The reason this works is because horizontal moves don’t change the number of inversions,
while vertical moves do. A vertical move will change the number of inversions by an odd
number if the puzzle width is even, and by an even number if the width is odd. The goal
state has 0 inversions.

� For odd-width puzzles, no combination of moves can possibly change the number of
inversions from even to odd, or vice versa. Thus if the initial number of inversions is
odd, it is impossible to reach the goal state.

� For even-width puzzles, we add the number of vertical moves the gap must make. This
value is 0 for the goal state, and any vertical move will change this sum by an even
number. Thus if the initial sum is odd, no combination of moves can possibly reach
the goal state.

Extra credit: There are better heuristics, that provide a better estimation of distance to
goal, that are still admissible. This will allow your solver to solve more complicated and
larger puzzles. Find one of these heuristics online, and implement it.


