
HW 4: Red-Black Tree

I have written a new program to analyze word counts in texts, with more functionality than
in the last assignment. It relies on a RedBlackTree object, that you must write.

As before, the program loads up a text, and counts the number of unique words it contains.
It also has new commands that are based on the orderability of keys (such as returning the
first key, or the next key after a given key). Here is a typical run of the program using
“Alice’s Adventures in Wonderland”:

$ java WordFreqs2 alice.txt

The text contains 2629 unique words.

Please enter a word to query, "!help" for help, or "!exit" to exit.

> !stats

Hash table statistics:

Size (n): 2629

Height: 15 (9 black)

Avg node depth: 9.773

red nodes: 681 (25.9%)

Root key: "in"

> >

The last word (alphabetically) is "zigzag".

> <zigzag

"zealand" comes before "zigzag" alphabetically.

> #616

Word #616 is "dream".

> &dream

"dream" is word #616.

> !exit

Goodbye!

Here is the API of the RedBlackTree object, with its methods’ expected time complexities:

� RedBlackTree() (constructor) (O(1)). Creates an empty red-black tree.

� void put(K key, V value) (O(log n)) Inserts a new key-value pair. You may assume
neither is null.

� V get(K key) (O(log n)) Returns the value corresponding to the given key, or null if
the key is not present.

� V delete(K key) (O(log n)) Removes a key-value pair, returning the deleted value.
Returns null if the key wasn’t present.

� boolean containsKey(K key) (O(log n)) Returns true if the key is present.

� boolean containsValue(V value) (O(n)) Returns true if the value is present.

� boolean isEmpty() (O(1)) Returns true if the tree is empty.

� int size() (O(1)) Returns n, the number of key-value pairs in the tree.

� K reverseLookup(V value) (O(n)) Finds a key that maps to the given value, or
returns null if there is none.

� K findFirstKey() (O(log n)) Returns the key that is less than all the others (or null
if none).

� K findLastKey() (O(log n)) Returns the key that is greater than all the others (or
null if none).

� K getRootKey() (O(1)) Returns the key contained in the root (or null if none).

� K findPredecessor(K key) (O(log n)) Returns the predecessor of the given key, or
null if the key is not present or has no predecessor.

� K findSuccessor(K key) (O(log n)) Returns the successor of the given key, or null
if the key is not present or has no successor.

� int findRank(K key) (O(log n)) Returns the rank of the given key, or -1 if the key
is not present.

� K select(int rank) (O(log n)) Returns the word with the given rank, or null when
the rank is invalid.

� int countRedNodes() (O(n)) Returns the number of red nodes in the tree.

� int calcHeight() (O(n)) Returns the height of the tree, where an empty tree has
height 0.

� int calcBlackHeight() (O(log n)) Returns the black height of the tree, or 0 for an
empty tree.

� double calcAverageDepth() (O(n)) Returns the average distance of the nodes from
the root. Empty trees should return NaN.

In Java, the key type K should implement the Comparable<K> interface, so that you can sort
keys as needed. You may make any private methods you want, though the lecture notes and
the text provide some good suggestions as to which ones to make. And of course, you must
adjust the syntax and names as appropriate if you are using a language other than Java.

Remember that color flips and rotations can only happen in certain circumstances. You
might find it useful to check conditions before doing these actions, and to throw exceptions
when they are violated. You might also want to make additional debugging methods that
check your tree, to make sure it is following all the rules. These ideas can save you a lot of
time, in debugging.

This is probably the hardest assignment of the semester. Please start as early as you can.

As always, style matters!

