HW 2: The Master Theorem

1. Use the master theorem to find the Θ class of algorithms with the following recurrence relations. (You may assume that $T(n)$ is constant for $n = 1$.)

 A. $T(n) = 2T(n/4) + 1$
 B. $T(n) = 2T(n/4) + \sqrt{n}$
 C. $T(n) = 2T(n/4) + n$
 D. $T(n) = 2T(n/4) + n^2$

2. Use the master theorem to find the Θ class of algorithms with the following recurrence relations. (You may assume that $T(n)$ is constant for $n = 1$.)

 A. $T(n) = 2T(n/4) + n^4$
 B. $T(n) = T(7n/10) + n$
 C. $T(n) = 16T(n/4) + n^2$
 D. $T(n) = 7T(n/3) + n^2$
 E. $T(n) = 7T(n/2) + n^2$

3. Use the master theorem to find a Θ class for each of the following algorithms.

 A. Mergesort. (Assume the average or worst case)

 B. Binary search, to find some predefined value within a pre-sorted array.

 C. An algorithm that takes a collection of n objects, and clusters similar objects together. It starts by taking all n objects and splitting it into two clusters of size $\frac{n}{2}$, so that each object is in a cluster of its most similar peers. Assume that this splitting-in-half process can be done in $\Theta(n^3)$ time. It then recurses on each side, so each half is again split in half—all the way down until each object is by itself in a “cluster” of size 1.