
HW 1b: The Master Theorem

1. Use the master theorem to find the Θ class of algorithms with the following recurrence
relations. (You may assume that T(n) is constant for n = 1.)

a. T(n) = 2T(n/4) + 1

b. T(n) = 2T(n/4) +
√
n

c. T(n) = 2T(n/4) + n

d. T(n) = 2T(n/4) + n2

2. Use the master theorem to find the Θ class of algorithms with the following recurrence
relations. (You may assume that T(n) is constant for n = 1.)

a. T(n) = 2T(n/4) + n4

b. T(n) = T(7n/10) + n

c. T(n) = 16T(n/4) + n2

d. T(n) = 7T(n/3) + n2

e. T(n) = 7T(n/2) + n2

3. Use the master theorem to find a Θ class for each of the following algorithms. Explain your
reasoning.

a. Mergesort. Assume the average or worst case

b. Binary search, to find some predefined value within a pre-sorted array. (Assume the
average or worst case.)

c. Clustering. An algorithm that takes a collection of n objects, and groups similar objects
together. It starts by taking all n objects and splitting it into two clusters of size n

2
, so

that each object is in a cluster of its most similar peers. Assume that this splitting-in-half
process can be done in Θ(n3) time. It then recurses on each side, so each half is again
split in half—all the way down until each object is by itself in a “cluster” of size 1.

d. Ternary search. This is a technique to efficiently find the maximum of a unimodal array
of doubles. (Every value in the array is along a smooth continuum with its neighbors,
and there is only one overall maximum point—there are no local maxima made of “baby
hills” in the arrays.) Here’s how it works:

� Find an element i that is one-third of the way through the array, and j that is
two-thirds of the way through.

� If array[i] < array[j], the maximum cannot be in the first third. Recurse on
the last two-thirds.

� If array[i] > array[j], the maximum cannot be in the last third. Recurse on
the first two-thirds.

� If array[i] = array[j], the maximum must be in the middle third. Discard the
outer thirds and recurse on the middle.

Assume each comparison of two elements can be done in constant time. What is the Θ
class of this algorithm?



e. Karatsuba’s algorithm for fast integer multiplication. Usually integer multiplication of
two n-bit numbers is Θ(n2), since you must multiply every bit in one number by every
other bit in the other number. If bit shifts and addition are cheap enough, Karatsuba’s
algorithm can speed this up.

� Let the two n-bit numbers be a and b. Split the bits of the two numbers in
half, separating the most-signficant bits from the least-significant bits. Call the 4
resulting n

2
-bit numbers aH , aL, bH , and bL. (H is for “high” bits, L for “low”.)

Then, where ≪ is left bit-shifting:

a = aH ≪ n

2
+ aL b = bH ≪ n

2
+ bL

� The product ab is thus:

ab = (aH ≪ n

2
+ aL)× (bH ≪ n

2
+ bL)

= (aHbH) ≪ n+ (aHbL + bHaL) ≪
n

2
+ aLbL

This formulation has 4 multiplications.
� However, the middle term can be reformulated as:

(aHbL + bHaL) = (aL + aH)(bL + bH)− aHbH − aLbL

Since aHbH and aLbL need to be calculated anyway, this lets us replace 4 multipli-
cations with 3.

� The three multiplications to be done are all on n
2
-bit numbers, and can be done

recursively. Multiplying single bits can be done in constant time.
Assume that the various addition and shifting can be done in linear time, and that n is
a power of 2. What is the Θ class?


