HW 1A: Assymptotic Analysis

- 1. For this question, consider the following program running times: n^2 , n^3 , $10000n^2$, $n \log n$, 2^n , 2^{2^n}
 - A. If you doubled the input size n, how much slower would each algorithm get?
 - **B.** If you added 1 to the input size n, how much slower would each algorithm get?
 - **c.** Assume that the running time above is the *exact* number of instructions required, and that your computer can run 10^{10} instructions per second. What is the largest value of n for which each program would terminate in an hour or less?
- 2. For this question, arrange the functions in order of ascending growth rate. (That is, if you list f(n) before g(n), it must be the case that $f(n) \in O(g(n))$.

 $f_1(n) = n^{2.5}, \quad f_2(n) = \sqrt{2n}, \quad f_3(n) = \log n, \quad f_4(n) = 10^n, \quad f_5(n) = 100^n, \quad f_6(n) = n^2 \log n$

- 3. Certain holiday songs (like "The Twelve Days of Christmas" or "Khad Gadya") add a new line each verse. What is the Θ class of these songs? Explain.
- 4. Consider searching a binary-search tree for a certain value, that may or may not be in it.
 - **A.** Prove that in the *worst case*, searching the BST is $\in \Theta(n)$.
 - **B.** Prove that in the *best case*, searching the BST is $\in \Theta(1)$.
 - c. For general BST search (that is, where the conditions could be best-case, worst-case, or somewhere in between), what are the tightest O and Ω bounds possible?
 - **D.** Does general BST search have a Θ class? Why or why not?