Homework 12

1. Consider two different processors supporting 32-bit addresses with a direct-mapped cache design, with each bit designated as in the table. Answer the questions for each one.

	Tag	Index	Offset
P1	$31-10$	$9-4$	$3-0$
P2	$31-12$	$11-5$	$4-0$

A. How large is a block in each system? (16 B; 32 B)
в. How many blocks does the cache store? (64 blocks; 128 blocks)
c. How much data is stored in the cache? ($1 k B ; 4 k B$)
D. How large does the cache have to be, including all overhead data? What percent of the cache is used for actual cached data? (1216 B, 84.2\%; 4448 B, 92.1\%)
2. A direct-mapped cache in a system with 32 -bit addressing consists of slots for 64 different 16 -byte blocks.
A. In the address, which bits are dedicated to the offset, index, and tag? (tag: 10-31; index: 4-9, offset: 0-3)
B. Starting with an empty cache, a program requests the following bytes:

12	20	36	8	1032	1056	24	32	2052	12	2088	1028

Make a table, giving for each request the block number, offset, index, tag, and whether the request is a hit or a miss. (1028 is block 64, index 0, tag 1, miss; you're on your own for the others)
c. What is the hit ratio of the above requests? (16.67\%)
D. Which bytes are held in the cache after the last request? (16-31, 1024-1039, 2080-2095)
3. Repeat Problem 2, but this time using a set-associate cache of the same overall size, in which each of the 32 sets can hold 216 -byte blocks. Use a least-recently used eviction strategy.
A. (tag: 9-31; index: 4-8, offset: 0-3)
C. (25%)
B. (1028 is block 64, index 0, tag 2, miss)
D. (0-47, 1024-1039, 2080-2095)
4. Consider two different caches with the properties as given in this table. Assume that a mainmemory access takes 70 ns , and that 36% of all instructions are memory requests.

	Size	Miss Rate	Hit Time
C1	1 kB	11.4%	0.62 ns
C2	2 kB	8.0%	0.66 ns

A. If the clock cycle time of the CPU is set based on the time of a hit using each cache, what will the rate of the computer be? (1.61 GHz; 1.52 GHz)
в. What is the AMAT for each cache? How many cycles will memory access take on average? ($8.60 \mathrm{~ns}, 13.87 \mathrm{cyc} ; 6.26 \mathrm{~ns}, 9.48 \mathrm{cyc}$)
c. Assuming all non-memory-access instructions take 1 cycle, what is the average time taken by one instruction? What is the average overall CPI? (3.49 ns, 5.63 CPI ; $2.68 \mathrm{~ns}, 4.05 \mathrm{CPI}$)

