Computers are real machines that obey real physical laws. Whenever you write a program, it needs to be translated into computer language “machine code” before it can run. Machine code looks like a stream of raw data, and is not easily readable. However, assembly language is an intermediate between high-level languages like C++ and Java, and the raw machine language. It can be read by humans, but its flow is much more oriented toward the computer’s point of view. Assembly language is specific to the kind of processor a computer uses (e.g. Intel’s x86 chipset or a MIPS chipset).

Even machine code eventually needs to be translated, down to the physical shifts of electrons that make a computer compute. Computer architecture is the study of designing computer hardware, from computer chips to hard drives. We will learn how chips work, and experiment with some basic circuit designs.

The topics we will cover include:

- Digital logic.
- Hardware design.
- MIPS assembly language.
- Memory addressing.
- Pipelining of instructions.
- Caching and virtual memory.
- Pros and cons of different architectures.

The class web page will be located at [http://mathcs.pugetsound.edu/~aasmith/cs281/](http://mathcs.pugetsound.edu/~aasmith/cs281/). Valuable info and links will be posted there.

We will be using *Computer Organization and Design*, by Patterson and Hennessy. You may use either the 4th or 5th edition. Please be careful if you buy this online, as there is another book by the same authors reversed (Hennessy and Patterson).

You should have already passed CSCI 261 or its equivalent, with a C- or higher.

There will be twelve assignments over the course of the class—usually one each week. You are free to talk to others in the class about them, and to work in teams on written assignments, but all programming and chip design must be 100% your own work.

Assignments will be penalized by 20% for each working day (or fraction thereof) they are late, down to 40%. However, you will have five “extension days” during the semester to extend a deadline by one working day. These are intended for unforeseen circumstances, and will be used automatically unless you specify otherwise. The hard deadline for all assignments is the beginning of the last class before the relevant exam. (This is so that I may release the answer keys.) After that, I will not take any more assignments, regardless of extension days.
There will also be a course project toward the end of the semester. This is a self-directed project, expanding on one of the areas we have covered. You may work in pairs, if you wish. One-paragraph proposals will be due just after Spring Break, and the project itself will be due on the last day of class.

You all should be aware of the Honor Code at the college. Please do not cheat—it will not go well for you. *Any suspected cheating will be immediately reported.*

Exams are closed book, and will be cumulative. You are allowed a calculator (or your phone, so long as it is in “airplane mode”) and one two-sided, letter-sized page of notes.

**Grading**

Final grades will be determined as follows:

<table>
<thead>
<tr>
<th></th>
<th>Homeworks</th>
<th>Project</th>
<th>Midterm 1</th>
<th>Midterm 2</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>25%</td>
<td>10%</td>
<td>20%</td>
<td>20%</td>
<td>25%</td>
</tr>
</tbody>
</table>

In particular, notice how heavily weighted assignments are. *Missing assignments is the easiest way to get a lower grade.* Please be sure you do them, and on time.

Tests will be cumulative. They will be graded on a curve, with the highest score considered to be 100%. In addition, class participation and effort may help bump you up, if your final grade is borderline.

**Attendance**

I will not be keeping attendance (except on the first day). However, odds are that your attendance will correlate highly with your final grade.

**Boilerplate**

If you have a physical, psychological, medical or learning disability that may impact your course work, please contact Peggy Perno, Director of the Office of Accessibility and Accommodation, 105 Howarth, 253.879.3395. She will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential.

Please review university emergency preparedness and response procedures posted at [www.pugetsound.edu/emergency/](http://www.pugetsound.edu/emergency/). There is a link on the university home page. Familiarize yourself with hall exit doors and the designated gathering area for your class and laboratory buildings. If building evacuation becomes necessary (e.g. earthquake), meet your instructor at the designated gathering area so she/he can account for your presence. Then wait for further instructions. Do not return to the building or classroom until advised by a university emergency response representative. If confronted by an act of violence, be prepared to make quick decisions to protect your safety. Flee the area by running away from the source of danger if you can safely do so. If this is not possible, shelter in place by securing classroom or lab doors and windows, closing blinds, and turning off room lights. Lie on the floor out of sight and away from windows and doors. Place cell phones or pagers on vibrate so that you can receive messages quietly. Wait for further instructions.

**Miscellany**

If there are any special holy days that you will be taking off, please let me know as soon as you can so that we can work around them.

Please consider getting a flu shot. Influenza kills, and disease can spread rapidly in the dorms. (And you really don’t want to miss a week of class. Trust me.)

Finally...if there’s anything else I can do to help you, please let me know. I’m willing to go out of my way to make this a valuable class for you, but I can’t do that unless you talk to me.