
HW 12: Hash Tables

You must create a HashTable object, that is able to store many arbitrary values, indexed
by an arbitrary key type. Like the UnorderedTable, this will use two generics: K and V.

Recall that a hash table is just an array of sequential-search symbol tables. The easiest way
to do this is to create a nested class called Node or UnorderedTable, that recycles your code
from this week’s lab. Then, your HashTable will have one field, which would ideally be an
array of Nodes. However, remember that Java has severe problems with making an array
of objects that take a generic type. This assignment will be much easier if you just use an
ArrayList. Make sure that your ArrayList is only allocated once, and that it never has to
resize itself.

Your HashTable class must have the following public methods (which should run in at most
O(α) time, where α is the load factor):

� HashTable(int tableSize), which is the constructor. It makes a brand new, empty
HashTable, with an internal array or array list of tableSize Nodes.

� void clear(), which deletes all key-value pairs from the HashTable.

� boolean delete(K key), which removes a key and its value. If the key isn’t in the
HashTable, do nothing and return false. If it is, delete it and return true.

� V get(K key), which returns the value to which the key maps. If the key is not
contained in the HashTable, return null.

� int getSize(), which returns the total number of key-value pairs there are in the
HashTable. This should be constant in time.

� void put(K key, V value), which puts the given key-value pair into the HashTable.
If key already mapped to something else, it should replace the old value.

� A unit-testing main() method to test all the above methods, in a variety of situations.

You may of course have other private methods, if you wish. For example, it may be useful
to have a private calcIndex() function that takes a key, and returns the proper hash code
(modded to the table size and made positive).

In addition to the HashTable class, you must make a program called “Animalpedia”. The
job of Animalpedia is to load a tab-separated (.tsv) file that contains three columns:

1. The name of an animal.

2. The type of the animal (e.g. mammal, arthropod, etc.)

3. The number of feet the animal has.

It will then create two different HashTables: one that indexes the type of the animal by its
name, and one that indexes the number of feet by the name. Each may have a table size of
101 (which is a prime number). Once the two tables are loaded, it will answer queries from
the user. It will ask for an animal. If the user enters an animal it recognizes, the program



will report what type it is and how many feet it has. Of course, it is possible that the user
will enter an unknown animal. If that’s the case, simply print a basic error message, and
proceed to the next query. The program will end when the user enters a blank string:

Welcome to Animalpedia!

File "animals.tsv" loaded.

Please enter an animal, or hit enter to quit.

Your animal: cat

A cat is a mammal, that has 4 legs.

Your animal: octopus

A octopus is a mollusk, that has 8 legs.

Your animal: sldkf

I’m sorry. I don’t know what a "sldkf" is.

Your animal:

Goodbye!

The two classes you turn in should be HashTable and Animalpedia.

A small amount of extra credit is available if you make your HashTable rehash as it grows
and shrinks, to keep the load factor α roughly constant.


