
HW 3: An Array List From Scratch

You will create an object called MyArrayList, that mimics the ArrayList object built into
Java. The generic type will be called E.

In general, ArrayLists automatically resize themselves as needed so that they always have
enough space. Your MyArrayList will do this as well. To another programmer using your
MyArrayList, this should all happen automatically and invisibly.

There are two pieces of data that may be thought of as “size”: both the length of the internal
backing array, and the number of valid elements that have been added to the list. To keep
these concepts clear, we will refer to the array’s length as the capacity, and the number of
elements that have been added as the size.

Like the BoundedSet, this object should have two private fields:

1. the current size of the MyArrayList

2. an E array holding its contents

In addition, you should have a constant named DEFAULT CAPACITY, which will be the initial
size if one is not given. This should be set to 10.

Unlike the BoundedSet, element order matters! When an item is inserted or deleted, the
other ones must all shift places to maintain their order. Also, elements may be null or
duplicates of other elements already inside the list.

You must implement the following public methods:

� MyArrayList(int initialCapacity), which is a constructor in which the initial ca-
pacity is specified.

� MyArrayList(), which is a another constructor that sets the initial capacity to be
DEFAULT CAPACITY.

� void add(E element), which adds the element to the end of the MyArrayList. If
there is not enough space to add the new element, you must reallocate so that its
capacity is doubled.

� void add(int index, E element), which adds the element to the specified position
in the MyArrayList, shifting other items further down the list. If there is not enough
space to add the new element, you must reallocate so that its capacity is doubled.



� void clear(), which removes every element of this MyArrayList, setting every ele-
ment in the array to null and resetting the capacity to DEFAULT CAPACITY and the
size to 0.

� boolean contains(E element), which returns whether or not the eleement is present
inside the MyArrayList.

� void ensureCapacity(int capacity), which ensures that the MyArrayList’s cur-
rent capacity is at least the number specified. If it is too small, it will be reallocated.
If it is already big enough, nothing will be done.

� int findIndex(E element), which returns the first index at which the element is
found (0-indexed), or -1 if it isn’t present.

� E get(int index), which returns the element at the given index. This should throw
an IndexOutOfBoundsException if the given index isn’t in the proper range.

� int getCapacity(), which returns the current capacity of the MyArrayList.

� int getSize(), which returns the number of elements currently contained in the
MyArrayList.

� boolean isEmpty(), which returns true if this MyArrayList is empty; otherwise it
returns false.

� void remove(int index), which removes the object from the specified index of the
MyArrayList. All subsequent elements are shifted back one position. This should
throw an IndexOutOfBoundsException if index isn’t in the proper range. If removing
this element causes the size to be less than or equal to one quarter of the current
capacity, reallocation should occur so that capacity is halved.

� void set(int index, E element), which overwrites the element at the given index.
This should throw an IndexOutOfBoundsException if index isn’t in the proper range.

� String toString(), which returns a String representing this MyArrayList. The
String will consist of a comma-separated list of individual elements, inside a single
pair of square brackets ([]s). Only items legitimately added to the MyArrayList

should be included.

In addition, you are responsible for creating your own unit-testing main() method. This
method must call every one of the above methods at least one time. It must also use at least
2 different MyArrayLists of different types. It must also resize a MyArrayList at least once
on add() and at least once on remove().

Keep an eye out for methods that do similar tasks, that can call each other. Remember, try
to avoid duplicated code, because it’s harder to maintain! Also, this task will be easier if
you create a private reallocateArray() method that makes a brand new array, copies old
elements into it, and replaces the old one.

Finally, remember to comment adequately, and to use Javadoc comments with every public
method (except the unit-testing main()). Coding style is important!


